Test 2 Numerical Mathematrics 2
 April 13, 2023

Duration: 1 hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark for this test.

1. Consider the 100×100 matrix

$$
A=\left[\begin{array}{cccccc}
-1 & 101 & & & & \\
-99 & -2 & 101 & & & \\
& -99 & -2 & 101 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -99 & -2 & 101 \\
& & & & -99 & -2
\end{array}\right]
$$

(a) [1] Show that A is irreducible.
(b) [2] Write A as the sum of a symmetric and a skew-symmetric matrix. Consider the symmetric part and localize its eigenvalues by the Gershgorin theorems. And similar for the skew-symmetric part of A
(c) [1] According to Bendixson's theorem where are the eigenvalues of A located in the complex plane based on the results in the previous part?
2. [2] Let A be a real symmetric matrix. Let x, with $\|x\|_{2}=1$, and θ be a Ritz pair obtained from the Lanczos method. Show that

$$
\|A x-\theta x\|_{2}>\min _{\lambda \in \sigma(A)}|\lambda-\theta| .
$$

3. Consider the three matrices below

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 4
\end{array}\right], \quad\left[\begin{array}{ccc}
4.6792 & .2979 & 0 \\
.2979 & 3.0524 & .0274 \\
0 & .0274 & 1.2684
\end{array}\right], \quad\left[\begin{array}{ccc}
4.7104 & .1924 & 0 \\
.1924 & 3.0216 & -.0115 \\
0 & -.0115 & 1.2680
\end{array}\right]
$$

which are respectively the original matrix and two subsequent iterates in the QRmethod. Moreover, it is given that the eigenvalues of the original matrix are 4.7321, 3.0 and 1.2679.
(a) [1] How is the QR-method defined? Where does it, for general real matrices, converge to?
(b) [1] Explain the reduction factor of the off-diagonal elements from the middle to the right matrix.
(c) [1] Suppose we apply a QR-step including shift to the middle matrix. By which factor will the $(3,2)$ element decrease approximately?

