Test 2 Numerical Mathematrics 2 April 13, 2023

Duration: 1 hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark for this test.

1. Consider the 100×100 matrix

$$A = \begin{bmatrix} -1 & 101 & & & \\ -99 & -2 & 101 & & & \\ & -99 & -2 & 101 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -99 & -2 & 101 \\ & & & & -99 & -2 \end{bmatrix}$$

- (a) [1] Show that A is irreducible.
- (b) [2] Write A as the sum of a symmetric and a skew-symmetric matrix. Consider the symmetric part and localize its eigenvalues by the Gershgorin theorems. And similar for the skew-symmetric part of A
- (c) [1] According to Bendixson's theorem where are the eigenvalues of A located in the complex plane based on the results in the previous part?
- 2. [2] Let A be a real symmetric matrix. Let x, with $||x||_2 = 1$, and θ be a Ritz pair obtained from the Lanczos method. Show that

$$||Ax - \theta x||_2 > \min_{\lambda \in \sigma(A)} |\lambda - \theta|.$$

3. Consider the three matrices below

ſ	2	1	0		4.6792	.2979	0		4.7104	.1924	0
	1	3	1	,	.2979	3.0524	.0274	,	.1924	3.0216	0115
	0	1	4		0	.0274	1.2684		0	0115	1.2680

which are respectively the original matrix and two subsequent iterates in the QRmethod. Moreover, it is given that the eigenvalues of the original matrix are 4.7321, 3.0 and 1.2679.

- (a) [1] How is the QR-method defined? Where does it, for general real matrices, converge to?
- (b) [1] Explain the reduction factor of the off-diagonal elements from the middle to the right matrix.
- (c) [1] Suppose we apply a QR-step including shift to the middle matrix. By which factor will the (3,2) element decrease approximately?